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Abstract. The shape of a liquid drop placed in a cone is analysed macroscopically. Depending on
the values of the cone opening angle, the Young angle and the line tension, four different interfacial
configurations may be realized. The phase diagram in these variables is constructed and discussed;
it contains both the first- and the second-order transition lines. In particular, the tricritical point is
found and the value of the critical exponent characterizing the behaviour of the system along the
line of the first-order transitions in the neighbourhood of this point is determined.

1. Introduction

The role of line and surface tensions in determining the morphology of interfaces is well
known [1–7]. For example, the values of the contact angles formed by an interface and a
substrate depend on both the line and the surface tensions. In the simplest case of a drop
sessile on a flat substrate the influence of line tension is described by the modified Young
equation [4,7]. Generally the competition between interfacial tension and the line tension may
result in the formation of different interfacial configurations and transitions between them.
While the interfacial tension is positive [8] and tends to decrease the interfacial area, the line
tension can be positive or negative and the negative values of the line tension [9] support the
increase of the three-phase contact line. However, even the presence of positive line tension
may result in the formation of different interfacial configurations and transitions between them.
For example, Widom [10] in his analysis of a sessile drop on a flat substrate found a line of
first-order phase transitions parametrized by the line tension.

In this paper we analyse the equilibrium shapes of a non-volatile liquid drop placed in a
cone by taking into account both the surface tension and the line tension effects. The system
and our methods of macroscopic analysis are described in section 2. In section 3 we find
the equilibrium configurations of the liquid which are parametrized by the values of the cone
opening angle, the Young angle—which itself depends on the values of the interfacial and
surface tensions—and the line tension. This section is divided into two parts. In the first part
the case of zero line tension is considered analytically; in the second part we solve numerically
the non-zero line tension case. The phase diagram found in this section is our main result. The
last section contains the conclusions and remarks.

2. Macroscopic analysis

We consider a given amount of liquid placed on a non-deformable solid substrate which has the
shape of a cone with the opening angle 2ψ , ψ < π/2. The bulk thermodynamic conditions,
say the temperature and the pressure, are chosen such that the liquid is in equilibrium with
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its vapour. The liquid can form one or more separate droplets; see figure 1. The physical
parameters used in our analysis are the liquid–vapour, substrate–liquid and substrate–vapour
surface tensions denoted as σlv , σsl , σsv , respectively; the line tension accompanying the
substrate–liquid–vapour contact line is denoted as ηslv . The gravity effects are neglected; for
a discussion of their role, see [10].

Figure 1. A schematic plot of the system. As an example, the configuration with two interfaces is
shown. The z-axis coincides with the axis of the cone.

The configurations of the liquid are uniquely determined by the shapes of the liquid–
vapour interfaces. We assume that the shape of the ith interface may be described by the
single-valued function fi . Thus the set {fi}ni=1 describes the liquid configuration with n liquid–
vapour interfaces numbered from the top to the bottom of the cone. Our analysis is restricted to
configurations with cylindrical symmetry and interfaces which are smooth at the cone axis. In
consequence all functions fi depend on only one variable—the distance ρ from the cone axis.

We start by constructing the macroscopic constrained free energy which is a functional
of interfacial configurations. Then we find the equilibrium configurations which correspond
to the minima of this functional. Actually we consider the excess free energy with respect to
the configuration in which the cone is filled with the vapour only. This excess free energy is
denoted by F[{fi}ni=1] and has the following form:

F = Alvσlv + Asl(σsl − σsv) + Lηslv (1)

where Alv , Asl denote the areas of the liquid–vapour and substrate–liquid interfaces, resp-
ectively and L is the length of the three-phase contact line. After substituting the expressions
for Alv , Asl and L in terms of {fi}ni=1 into equation (1), one obtains

F[{fi}ni=1] = 2πσlv

∫ ∞

0

( n∑
i=1

θ(fi(ρ)− ρ cotanψ)

(√
1 +

(
dfi
dρ

)2

+
1

sinψ

(
(−1)i

σsv − σsl

σlv
+
ηslv sinψ

σlvρ

)))
ρ dρ. (2)
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θ denotes the Heaviside function. We look for the minima of the above functional under the
constraint of fixed volume V of the liquid. Thus the functional to be minimized takes the form

F∗[{fi}ni=1] = F[{fi}ni=1] + λV [{fi}ni=1] (3)

where λ is the Lagrange multiplier and

V = 2π
∫ ∞

0

( n∑
i=1

(−1)i+1(θ(fi(ρ)− ρ cotanψ)(fi(ρ)− ρ cotanψ)

)
ρ dρ. (4)

Accordingly, the equilibrium shape of the ith liquid–vapour interface fulfils the following
differential equation:(

1 +

(
dfi
dρ

)2)−3/2(d2fi

dρ2
ρ +

(
1 +

(
dfi
dρ

)2)dfi
dρ

)
= (−1)i+1 λ

σlv
ρ (5)

supplemented by the boundary conditions

f (ρi) = ρi cotanψ (6a)

whereρi denotes the distance from the cone axis at which the ith interface touches the substrate,
and(

1 +

(
dfi
dρ

)2)−1/2(
1 + cotanψ

dfi
dρ

)
= (−1)i+1 1

sinψ

σsv − σsl

σlv
− ηslv

σlvρi
(6b)

where all the derivatives are calculated at ρ = ρi . Equation (6b) is equivalent to the statement
that the contact angle θi of the ith interface (defined as the angle between this interface and the
substrate measured across the liquid; see figure 1) fulfils the following form of the modified
Young equation for the cone [4, 7]:

cos θi = cos θ0 + (−1)i+1 ηslv

σlvρi
. (7)

θ0 denotes the Young angle, i.e. the contact angle of the liquid drop on a flat substrate and in
the case of zero line tension:

cos θ0 = σsv − σsl

σlv
. (8)

The solution of (5) which is smooth on the cone axis and satisfies the boundary condition (6a)
has the form

fi(ρ) = ρi cotanψ + (−1)i sgn (λ)

(√(
2σlv
λ

)2

− ρ2 −
√(

2σlv
λ

)2

− ρ2
i

)
. (9)

Thus each liquid–vapour interface forms a part of a sphere with radius R = 2σlv/λ. It can be
determined from the fixed-volume constraint (4):

R =
(

3V

π

)1/3( n∑
i=1

(
cos2(θi + (−1)i+1ψ)(−1)i+1 cos θi

sinψ

− 2(1 − sin(θi + (−1)i+1ψ))

))−1/3

. (10)

The location of the three-phase contact line of the ith interface is given by

ρi = R cos(θi + (−1)i+1ψ). (11)
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After introducing the dimensionless quantities

F̄ = F
2π(3V /π)2/3σlv

(12a)

R̄ = R

(3V /π)1/3
(12b)

η̄ = ηslv

σlv(3V /π)1/3
. (12c)

the free energy of a given drop configuration can be expressed in the following form:

F̄n = R̄2
n∑
i=1

(
1 − sin(θi + (−1)i+1ψ)

+ (−1)i
cos θ0

2 sinψ
cos2(θi + (−1)i+1ψ) +

η̄

R̄
cos(θi + (−1)i+1ψ)

)
(13)

where the subscript n in F̄n refers to the case with exactly n interfaces present in the system.
The modified Young equation takes the form

cos θi − cos θ0 +
η̄

R̄

(−1)i+1 sinψ

cos(θi + (−1)i+1ψ)
= 0. (14)

It can be checked that equations (13) and (14) remain valid for all contact angles 0 < θi < π , so
our primary restriction to interfaces described by the single-valued functions may be discarded.

In the above formulae—in addition to the contact angles θi—only the parameters θ0, η̄
and ψ appear. Thus from now on this set of three variables will be used to parametrize the
equilibrium properties of the system. Note that the volume V enters the rhs of (13) only via
the expression for η̄, where it rescales the line tension.

3. Equilibrium drop configurations

3.1. Zero line tension

In this subsection we put η̄ = 0. In this case the solution of (14) takes the form

θi = θ0 (15)

which means that only configurations with one and two interfaces are allowed. These
configurations we will be called the blob and the bridge configurations, respectively [11, 12].
The corresponding free energies take the following form:

F̄1 = 2−2/3

(
(1 − sin(θ0 + ψ))− cos θ0

2 sinψ
cos2(θ0 + ψ)

)1/3

(16)

(blob configuration) and

F̄2 = 2−2/3

(
(1 − sin(θ0 + ψ)) + (1 − sin(θ0 − ψ))

− cos θ0

2 sinψ
(cos2(θ0 + ψ)− cos2(θ0 − ψ))

)1/3

(17)

(bridge configuration). Comparing the above free energies leads to the conclusion that for
θ0 � π/2 + ψ the equilibrium configuration has the form of a blob while for θ0 > π/2 + ψ it
takes the form of a bridge. According to (11) the transition between the blob and the bridge
configurations corresponds to the situation in which the bottom interface of the bridge reaches
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the vertex of the cone. This transition is continuous, i.e. the temperature derivative of the free
energy is continuous, which translates into continuity of the free-energy derivative with respect
to θ0 at θ0 = π/2 +ψ . This result is similar to the one for adsorption in a wedge [12]. Figure 2
shows the relevant phase diagram.

Figure 2. The phase diagram in the case of zero line tension. The point θ0 = ψ +π/2 corresponds
to the continuous transition between the blob and bridge configurations.

3.2. Non-zero line tension

Forη �= 0 the analysis of equation (14) and the corresponding free energy shows that—similarly
to the case for zero line tension—only configurations with one and two interfaces which are
rotationally symmetrical and smooth at the axis of the cone are admitted. This case, contrary
to the previous one, can be treated only numerically. One method of finding the equilibrium
values of the contact angles is to solve (14) numerically and then to calculate the corresponding
values of the free energy in order to find the equilibrium solution. However, it turns out that
the direct numerical minimization of the constrained free energy is a more efficient procedure
for determining the equilibrium configurations and we follow this method [13].

The equilibrium configuration of the drop—for given set of values of θ0, η̄ and ψ—
corresponds to the global minimum of the free energy. In practice one has to find all the
minima of (13) corresponding to the blob (n = 1) and the bridge (n = 2) configurations
including also the minima localized on the borders of contact angle domain, i.e. for θ1 or θ2

equal to 0 or π , and then to compare the values of the corresponding free energy. Table 1
introduces the terminology used in describing the phase diagram.

Figure 3 shows schematically the generic phase diagram; figure 4 presents the actual phase
diagrams corresponding to particular values of the cone opening angle.

Table 1. Configurations of liquid in a cone.

Configuration Number of interfaces θ1 θ2

Blob 1 �=0, �=π —
Wetting 1 =0 —
Quasi-drying 1 =π —
Bridge 2 �=0, �=π �=0, �=π
Lower drying 2 �=0, �=π =π
Upper drying 2 =π �=0, �=π
Drying 2 =π =π
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Figure 3. The generic phase diagram. Different shades of grey correspond to different phases
which are schematically depicted in the insets. The continuous lines B–E and A–D correspond to
the first-order phase transitions; the broken line A–F–G corresponds to the continuous transition.
Point A denotes the tricritical point. The dotted line I–O forms the border of the region in which
the contact angle θ1 = 0; the dotted line H–B forms the border of the region in which the contact
angle θ2 = π . The drying region is restricted to point B.

Before discussing the phase diagram it is worthwhile recalling that for a given value of
the cone opening angle ψ the phase diagram is constructed as a function of the Young angle
θ0, equation (8), and the dimensionless line tension η̄, equation (12c), which is inversely
proportional to the cubic root of the liquid volume V . This means that a substantial influence
of the line tension can be observed only for drops of sufficiently small volume. If one takes
the value of the line tension to be 10−8 N [14], the value of liquid–vapour surface tension to
be 10−2 N m−1 [15] and the size of the liquid drop to be of the order of a micrometre, then
the dimensionless line tension is of order unity. For much bigger drops the effects of the line
tension will be negligible.

The rich structure of the phase diagram results from the competition between the surface
tension and the line tension. Depending on the values of parameters θ0 and η̄, the system can
be found in any of four different phases. They are distinguished by the number of interfaces
present in the system (one or two) and the value of the contact angle θ1 (corresponding to
the upper interface) being equal to π or being different from π ; see also table 1. These four
phases are shown in figure 3 with the help of different shades of grey and are separated from
each other by thick continuous or thick broken lines depending on the order of the transition.
To make the phase diagram more transparent, each phase is schematically marked with the
corresponding liquid configuration. Additionally, within two of the above phases one can
distinguish quantitatively different regions. The lower left part of the phase diagram contains
a region corresponding to a configuration with only one interface and zero contact angle;
we call it the wetting configuration. The dotted line I–O marks the boundary of this region;
upon crossing this line the contact angle ceases to be equal to 0. The upper left part of the
phase diagram corresponds to a configuration with two interfaces and the contact angle θ2

corresponding to the lower interface being equal to π . Again, the dotted line H–B marks the
boundary of this region; upon crossing it, the contact angle θ2 ceases to be equal to π .
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Figure 4. The phase diagrams for two particular choices of the cone opening angle: (a)ψ = π/16;
(b) ψ = 3π/16. The shades of grey correspond to those used in figure 3. Note that the regions
corresponding to the wetting and lower drying configurations are not marked on this figure.

The line B–E is the first-order transition line separating configurations distinguished by
the value of the contact angle θ1 being equal to π and different from π . Here the first-order
transition denotes the situation in which the first derivative of the free energy with respect to
temperature is discontinuous; this translates into discontinuity of the free-energy derivatives
with respect to both θ0 and η̄ and corresponds to discontinuous behaviour of the angle θ1. Note
that the segment C–E corresponds to the first-order transition between phases in which only
one interface is present while the segment B–C corresponds to the first-order transition between
the phases in which two interfaces are present; upon crossing this segment, discontinuity of
θ2 is observed. It is worthwhile noting that the line B–E corresponds—for the cone geometry
considered in this paper—to the phase transition found by Widom [10] when analysing a
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liquid drop sessile on a flat substrate. The difference between the phases separated by the
line B–E becomes smaller and smaller upon approaching point B and finally disappears at this
point. To examine the shape of the B–E line in the neighbourhood of this point, we look for
an approximate analytical solution of (14). For η̄ → 0 this set of equations can be solved
perturbatively and one finds that

(π − θ0) ∼ η̄1/2. (18)

The G–F–A–D line is the line of transitions between configurations with one and with two
interfaces, respectively. Along the segment G–F–A this transition is continuous while along
the segment A–D it is first order. This corresponds to discontinuity of the value of the contact
angle θ2; upon crossing the segment A–C one additionally observes the discontinuity of θ1.
Thus point A (η = 0, θ0 = π/2 +ψ), which played a crucial role in figure 2, turns out to be the
tricritical point in the enlarged space of system parameters. Analysing the shape of the A–D
line in the vicinity of the tricritical point leads again to the conclusion that(

θ0 −
(
π

2
+ ψ

))
∼ η̄1/2. (19)

One also observes that upon approaching the tricritical point the discontinuity of θ2 decreases
to zero as the square root of η̄. If the dependence on the cone opening angle ψ is considered,
one observes the decrease of the region BACD in figure 3 upon increasing ψ towards π/2;
in this limit, points A and D tend towards point B. This area corresponds to situations in
which positive line tension and the values of θ0 close to π stabilize the configurations with two
interfaces. Finally, for ψ = π/2 one recovers the phase diagram discussed by Widom [10].

4. Conclusions

In this paper we have investigated the configurations of a non-volatile liquid drop placed in
a cone. Our macroscopic analysis based on the constrained free energy leads to a phase
diagram parametrized by the Young angle θ0 and the dimensionless line tension η̄. The
interesting feature of the phase diagram is the existence of lines of the first- and the second-order
transitions corresponding either to discontinuous or continuous changes of the contact angles.
One also finds a tricritical point and a parabolic shape of the transition line in its vicinity.
Another property of the system is that the negative line tension stabilizes the so-called wetting
configuration into the range of non-zero values of the Young angle. This wetting configuration
is characterized by the presence of a single interface and zero contact angle.

One should keep in mind that the present analysis is restricted to interfacial configurations
which are cylindrically symmetric and smooth at the cone axis. In the case of negative line
tension with large absolute values, one might still expect a different class of equilibrium
configurations which consist of separate ‘rings’ extending along the cone. Analogous situations
appear also in the analysis of a sessile drop on a flat substrate; this is a subject that we will
analyse in the future.
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